Наноэлектроника – достижения и перспективы

// // Исследования и разработки //

наноэлектроникаТермин «наноэлектроника» относительно новый и пришел на смену более привычному для старшего поколения термину «микроэлектроника», под которым понимали передовые для 60-х годов технологии полупроводниковой электроники с размером элементов порядка одного микрона.

 

Однако наноэлектроника связана с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами элементов на порядки меньше, не превышающими 100 нм, а иногда и 10 нм.

Главной особенностью наноэлектроники является в первую очередь не простое механическое уменьшение размеров, а то, что для элементов таких размеров начинают преобладать квантовые эффекты, использование которых может стать очень перспективным. При переходе от микро- к наноэлектронике появляющиеся квантовые элементы зачастую мешают, например, работа обычного транзистора затрудняется из-за появления туннелироания носителей заряда, однако в новой электронике квантовые эффекты становятся основой.

Уже в 70-80 годы в полупроводниковую технику вошли такие наноразмерные структуры как гетеропереходы, сверхрешетки, квантовые ямы и квантовые точки, синтезируемые на основе многокомпонентных соединений изменяющегося состава. Для их создания были разработаны соответствующие технологические процессы, представляющие собой логическое развитие и совершенствование полупроводниковой классики: эпитаксии, диффузии, имплантации, напыления, окисления и литографии. В производство электронных компонентов стали внедряться такие технологии, как молекулярно-лучевая эпитаксия, ионно-плазменная обработка, ионно-лучевая имплантация, фотонный отжиг и многие другие.

Одной из важных вех на пути развития наноэлектроники стало создание сканирующий туннельный микроскоп и атомно-силовой микроскоп.

Метод сканирующей туннельной микроскопии,изобретенный в начале 80-х, основан на квантовом туннелировании. Иглы-зонды из металлической проволоки подвергаются предварительной обработке (такой, как механическая полировка, скол или электрохимическое травление) и последующей обработке в сверхвысоковакуумной  камере. Если приложить напряжение между иглой и образцом, то через промежуток потечет туннельный ток. Приложив несколько большее, чем при сканировании, напряжение между поверхностью объекта и зондом, можно добиться того, что к зонду притянутся один или несколько атомов, которые можно поднять и перенести на другое место. Прикладывая к зонду определенное напряжение, можно заставить атомы двигаться вдоль поверхности или отделить несколько атомов от молекулы. Именно так была в 1990 году сделана знаменитая надпись IBM из 35 атомов ксенона.
Что касается атомно-силового микроскопа, то он представляет собой сканирующий зондовый микроскоп высокого разрешения и используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Кроме того, с помощью атомно-силового микроскопа можно изучать взаимодействие двух объектов: измерять силы трения, упругости, адгезии, и, так же, как и с помощью туннельного, перемещать отдельные атомы, осаждать и удалять их с какой-либо поверхности.

Следующим открытием, по мнению многих ученых, определившим облик электронных схем будущего, стало появление нанотрубок и графена.

Нанотрубка представляет собой цилиндрическую структуру толщиной в несколько атомов, которая в зависимости от размера и формы может обладать проводящими либо полупроводниковыми свойствами. Например, если трубка прямая, она является проводником, а если скручена или изогнута — полупроводником. Нанотрубки могут  придать электронным схемам революционные механические и оптические свойства, или, говоря простым языком, сделать электронику гибкой и прозрачной. Нанотрубки более подвижны и не задерживают свет в тонком слое, так что опытные матрицы с интегральными схемами можно изгибать без потери электронных свойств. Оптимисты предсказывают, что не за горами день, когда ноутбук можно будет носить в заднем кармане джинсов, потом, сев на скамейку, развернуть до размера газеты, причем вся его поверхность станет экраном высокого разрешения, а после этого снова свернуть и, скажем, превратить в браслет на запястье.

Графен - один из самых известных видов материалов, при создании которых использовались нанотехнологии. Графен – двумерный кристаллический углеродный наноматериал, который можно представить себе как пластину, состоящую из атомов углерода. Данный материал обладает уникальными токопроводящими свойствами, которые позволяют ему служить как очень хорошим проводником, так и полупроводником. Кроме того, графен чрезвычайно прочен и выдерживает огромные нагрузки, как на разрыв, так и на прогиб. В настоящее время графен получают путем отшелушивания чешуек от частиц графита, однако существуют разработки, позволяющие получать данный материал в промышленных масштабах. Данный материал впервые получен и открыт группой российских ученых из Манчестерского университета.

Графен рассматривается как первый кандидат для применения в компьютерах, мониторах, солнечных батареях и гибкой электронике. В новом докладе «Углеродные нанотрубки и графен в прикладной электронике в 2011-2021 годах» IDTechEx прогнозирует, что УНТ и графеновые транзисторы станут доступными на рынке, начиная с 2015 года. По словам IDTechEx широкого применения оба материала найдут в печатной и потенциально печатной электронике, где стоимость этих устройств, которые частично будут включать эти материалы, будет достигать более $ 44 млрд в 2021 году.

Изобретение транзистора в 1947 привело к бурному развитию транзисторных полупроводниковых технологий, которые легли в основу современной электроники. За полвека транзистор уменьшился примерно в сто тысяч раз по линейному размеру и в 1010 раз — по массе и сегодня мы наблюдаем появление нанотранзисторов, то есть транзисторов, размеры которых исчисляются нанометрами.
Уже сейчас микроэлектронной промышленностью в опытном порядке создаются транзисторы с размером рабочих элементов 20–30 нм. Они еще способны работать с обычными электрическими сигналами.

Однако, при таком радикальном уменьшении линейных размеров происходит реальное изменение качества работы, так как  свойства самих электрических сигналов в наномире оказываются существенно иными, нежели в микромире. Электрический ток теперь нельзя представлять в виде некоего подобия «электрической жидкости» или «электронного газа», протекающих через управляемый вентиль, поскольку в наномире на первый план выходит квантованность электрического заряда.

Первые работающие прототипы нанотранзисторов созданы еще 10 лет назад. В 2001 г. IBM представила первый одноэлектронный транзистор на базе нанотрубок. По мнению специалистов из IBM Research, в идеале нанотрубкой в таком транзисторе будет заменяться только элемент доступа. При этом исток, сток и сама архитектура транзистора остаются без изменений. Одна из особенностей нанотранзистора заключается в улучшенной емкостной связи между нанотрубкой и затвором, которая усиливает донорство как электронов, так и дырок, а также распространение заряда вдоль нанотрубки на большие расстояния.
В то время, как одни исследователи видят будущее наноэлектроники за углеродными материалами, другие работают с традиционным кремнием.  Ученые Кембриджского университета и Японской научно-технической корпорации (Токио)  разработали одноэлектронный транзистор. Материалом для острова транзистора служит отдельный кластер аморфного кремния. Проводящий канал транзистора (остров) отделён от стока истока туннельными барьерами из тонких слоёв изолятора, при этом размеры острова – 10 нм. Важной особенностью этого транзистора является то, что он функционирует при комнатной температуре, а, как известно, быстродействие и размеры компьютерных микросхем  ограничены тем, сколько теплоты  они выделяют. Это явление носит  название резистивного нагрева.

Совсем недавно, в 2011 году, физики из Техасского университета в Далласе (UT Dallas) собрали полевой транзистор из нанопроводов. Диаметр нанопроводов, изготовленных методом литографии, составляет всего 3-5 нм. В устройстве нет  легированных полупроводниковых переходов и тем не менее его работа показывает высокую подвижность дырок, хорошую плотность тока, низкий ток утечки и целый ряд других привлекательных свойств.

Еще одной областью, в которой старые методы уступают место нанотехнологиям, является создание накопителей информации.

Возможности современных накопителей информации приближаются к своему пределу и в этой связи чрезвычайно актуальной является проблема создания накопителей, работающих на новых принципах. Идеи из области нанотехнологий обращаются к различным физическим принципам.
Одним из подходов является создание схем одноэлектронной памяти, где два-три электрона хранят один бит информации (в современной микроэлектронной памяти для хранения одного бита информации задействовано около 10.000 электронов).

 Эффект хранения информации в ячейке памяти создается за счет нескольких туннельных переходов, которые определенным образом коммутированы с конденсатором хранения информации. Активными элементами выступают органические молекулы, расположенные в перекрестиях двойной ортогональной сетки перекрещивающихся печатных проводников.

Другая идея нанопамяти подсказана принципом считывания обычного патефона, в котором игла считывает аналоговую информацию. В цифровом варианте единице и нулю соответствуют ямки, выдавленные в полимерном носителе. Ширина каждой ямки – около 40 нм, а глубина – не более 25 нм. Запись осуществляется с помощью щупа высоко допированного кремниевого кантилевера путем локального разогрева – щуп выдавливает ямки в полимере. Считывание осуществляется с помощью того же щупа. Нагрев меняет электрическое сопротивление, что фиксируется и преобразуется в цифровой сигнал. Таким образом, в один квадратный сантиметр можно вместить порядка 500 гигабит информации.
Совсем недавно ученые из Тайваня и университета Калифорнии сообщили о разработке разработала памяти на базе наноточек, которые располагаются на слое изолятора и покрыты металлическим слоем, играющем роль затвора. Запись и считывание ведутся с помощью свехркоротких вспышек зеленого лазера, который выборочно активирует определенные участки металлического слоя, создавая затвор над определенной наноточкой. Скорость записи и стирания информации у такого запоминающего элемента в 50–100 раз выше, чем у современных устройств.

Мы видим, что переход к наноэлектронике в определенной степени базируется на достижениях микроэлектроники – использование уменьшающихся до атомарных размеров транзисторов и диодов и собранных из них схем. В то же время  будущее сулит новые достижения на основе новых принципов работы на уровне отдельных атомов – использование квантовых эффектов, волновых свойств электрона и других явлений наномира.

 

 


Комментарии  

 
#2 Guest 21.08.2013 13:35
Естественно!
 
 
#1 Guest 19.02.2013 12:00
Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике; аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение.